Abstract

Interleukin-6 (IL-6), a multipotential cytokine, initiates signal transduction pathways similar to those of ciliary neurotrophic factor (CNTF) and leukemia inhibitory factor (LIF). These molecules share the signal transducing receptor component, gp130. IL-6 triggers homodimerization of gp130, whereas CNTF and LIF induce heterodimerization of gp130 and LIF receptor. Although CNTF or LIF treatment attenuates motor deficits in wobbler mouse motor neuron disease (MND), neuroprotective effects of IL-6 on this animal have not yet been clarified. Here we studied whether simultaneous treatment with IL-6 and soluble IL-6 receptor (sIL-6R) can ameliorate symptomatic and neuropathological changes in wobbler mouse MND. After clinical diagnosis at postnatal age 3-4 weeks, wobbler mice received subcutaneous injection with human recombinant IL-6 (1.0 mg/kg), human sIL-6R (0.5 mg/kg), IL-6 + sIL-6R or vehicle, daily for 4 weeks in a blind fashion. Compared to vehicle, coadministration with IL-6 and sIL-6R potentiated grip strength, attenuated muscle contractures in the forelimbs, reduced denervation muscle atrophy and prevented degeneration of spinal motor neurons. Single administration with IL-6 or sIL-6R did not retard the symptomatic and neuropathological progression, although IL-6-treated mice did not raise anti-IL-6 antibodies. Treatment with IL-6 + sIL-6R, but not with IL-6 or sIL-6R alone delayed progression of wobbler mouse MND. Our results indicate that the neuroprotective mechanism for IL-6/sIL-6R on wobbler mouse MND differs from that of CNTF or LIF alone. We hypothesize that IL-6/sIL-6R complex may function on motor neurons through activation and homodimerization of gp130.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.