Abstract

One of the most difficult experimental challenges today is testing the evolutionary dynamics shaping complex host-microbiome interactions. We investigated host-microbiome codiversification in response to xenobiotic-induced selection using an experimental evolution approach. To this end, we exposed the parasitoid wasp Nasonia vitripennis to sublethal concentrations of the widely used herbicide atrazine for 85 generations. Our results reveal that atrazine exposure not only mediated adaptive changes within the microbiome, which conferred host resistance to atrazine toxicity, but also exerted selective pressure on the host genome and altered host gene expression and immune response. Furthermore, microbiome transplant experiments reveal a decreased survival of adults from the control population after exposure to the evolved microbiome of the atrazine-exposed population, while no such decrease occurred in the reciprocal transplant. These results indicate that xenobiotic-induced selection mediated host-microbiome coadaptation, ultimately leading to a new host genome-microbiome equilibrium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call