Abstract

In this review, a detailed discussion on salient features of intermolecular interactions leading to phase separation and coacervation is discussed. Biomolecular solutions exist as gels, coacervates and melts with each of these phases having its signature physico-chemical properties which is discussed in this review. The discussions are supported by robust experimental data obtained from an array of methods like turbidimetry, electrophoresis, viscosity, light scattering etc. The inevitability of the phenomenon of self-organization in biopolymers results in generation of a variety of soft matter phases which do not, however, make it predictable. For instance the associate aggregation is a process which remains obscure, as every protein aggregates in a different manner under different conditions. One known feature to the aggregation of proteins is the strong dependence upon pH, salt concentration, and temperature. Beyond the influence of these factors and their effects on aggregation, the process is not well understood. In summary, a comprehensive account of biomolecular phase states and their inherent attributes are presented in this review. Potential applications of coacervates are many starting from protein purification, drug encapsulation to treatment of organic plumes. This calls for better understanding of the coacervate structure and the transport of biomolecules inside this phase. Several questions pertaining to the structure of coacervates can arise. The foremost of these is, is it a gel-like or a solution-like phase? Though presence of hydrogen bonding and hydrophobic sites on the polyions influence biomolecular binding, they hardly play any role in deciding the persistence length of the polyion unlike the surface charge. Interestingly, we observed that the differential binding (SPB versus EB) was found to be a function of intrinsic persistence length only which we conclude as a significant observation.

Highlights

  • Coacervation: Coacervation is a thermodynamic transition which allows a homogeneous solution of charged macroions to undergo liquidliquid phase separation, giving rise to a polymer- rich dense phase coexisting with its supernatant

  • It is clearly seen that a polyelectrolyte, chitosan and a polyampholyte, gelatin A can follow associative interaction culminating in coacervation transition and such a process is driven by charge selective patch binding mechanism

  • These pHs could to be correlated to persistence length with the distinction that low persistence length polyions preferentially interacted with DNA through surface patch binding mechanism whereas large persistence length polyions exhibited electrostatic binding with DNA

Read more

Summary

Introduction

Coacervation: Coacervation is a thermodynamic transition which allows a homogeneous solution of charged macroions to undergo liquidliquid phase separation, giving rise to a polymer- rich dense phase coexisting with its supernatant. We have shown that the formation of intermolecular soluble complexes and the phenomenon of coacervation could be achieved when a polyelectrolyte (agar) interacts with a polyampholyte (gelatin) through surface selective patch binding.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.