Abstract

Power prediction is now a crucial part of contemporary energy management systems, which is important for the organization and administration of renewable resources. Solar and wind powers are highly dependent upon environmental factors, such as wind speed, temperature, and humidity, making the forecasting problem extremely difficult. The suggested composite model incorporates Long Short-Term Memory (LSTM) and Swarm Intelligence (SI) optimization algorithms to produce a framework that can precisely estimate offshore wind output in the short term, addressing the discrepancies and limits of conventional estimation methods. The Coati optimization algorithm enhances the hyper parameters CNN-LSTM. Optimum hyper parameters improvise learning rate and performance. The day-ahead and hour-ahead short-term predictions RMSE can be decreased by 0.5% and 5.8%, respectively. Compared to GWO-CNN-LSTM, LSTM, CNN, and PSO-CNN-LSTM models, the proposed technique achieves an nMAE of 4.6%, RE 27% and nRMSE of 6.2%. COA-CNN-LSTM outperforms existing techniques in terms of the Granger causality test and Nash-Sutcliffe metric analysis for time series forecasting performance, scores are 0.0992 and 0.98, respectively. Experimental results show precise and definitive wind power-making predictions for the management of renewable energy conversion networks. The presented model contributes positively to the body of knowledge and development of clean energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call