Abstract

COA-Cl, a novel adenosine-like nucleic acid analog, has recently been shown to exert neuroprotective effects and to increase dopamine levels both in vivo and in vitro. Therefore, we hypothesized that COA-Cl could protect dopaminergic neurons against toxic insults. Thus, the present study aimed to investigate the protective effects of COA-Cl against hydrogen peroxide (H2O2)- and 6-hydroxydopamine (6-OHDA)-induced toxicity in PC12 cells and to elucidate the possible mechanisms. PC12 cells were incubated with COA-Cl (100μM) with or without H2O2 or 6-OHDA (200μM) for 24h. Treatment with COA-Cl attenuated the decrease in cell viability, SOD activity and the Bcl-2/Bax ratio caused by H2O2. In addition, COA-Cl attenuated the increase in LDH release, ROS production, caspase-3 activity, and apoptosis induced by H2O2. Further, COA-Cl enhanced the protection of PC12 cells against the toxicity caused by 6-OHDA, as evidenced by an increase in cell viability and the Bcl-2/Bax ratio, and a decrease in LDH release. Our results are the first to demonstrate that COA-Cl potentially protects PC12 cells against toxicity induced by H2O2 and 6-OHDA, implying that COA-Cl could be a promising neuroprotective agent for the treatment of Parkinson's disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.