Abstract

The unique magnetic properties of two-dimensional (2D) materials have demonstrated huge potential for applications in nanodevices and spintronics. In this work, we propose a new Kagome lattice, Co3X8 (X = Cl and Br), based on density functional theory (DFT) calculation. We find that Co/X in Co3X8 has spontaneous movement in the lattice, resulting in 156- and 12-phases of Co3X8 and diverse magnetic and electronic properties. We show that the magnetic and electronic properties of Co3X8 can be engineered by strain, and the magnetic properties of Co3X8 are highly related to the spontaneous movement of X. Moreover, the transmission property of 12-Co3X8 shows clear angle-dependent features due to the symmetry breaking as caused by the spontaneous movement of X. Our findings may provide not only a possible Kagome lattice with unique properties, but also a strategy for designing nanodevices and for spintronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call