Abstract

Abstract Transition metal oxides have recently aroused a renewed and increasing interest as conversion anode materials for sodium ion batteries. Being their electrochemical performances strongly dependent on morphological aspects, has been here proposed a straightforward approach to modulate morphological characteristics of a transition metal oxide (Co3O4) using a low cost synthetic route. The as obtained optimized morphology allows the realization of high practical specific capacities, higher than 500 mAh g−1 after 50 cycles, and represents a valid candidate for further optimization. In addition to the morphology-performance correlations, the reaction mechanism beyond the electrochemical behavior was also investigated revealing the role of the CoO phase in the charge/discharge process. Finally, an electrode pre-sodiation treatment for conversion materials is presented: it has been indeed demonstrated that it sensibly decreases the irreversible capacity correlated to the first cycle and improves cycle ability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call