Abstract

AbstractConfining nanostructured electrode materials in porous carbon represents an effective strategy for improving the electrochemical performance of lithium‐ion batteries. Herein, we report the design and synthesis of hybrid hollow nanostructures composed of highly dispersed Co3O4 hollow nanoparticles (sub‐20 nm) embedded in the mesoporous walls of carbon nanoboxes (denoted as H‐Co3O4@MCNBs) as an anode material for lithium‐ion batteries. The facile metal–organic framework (MOF)‐engaged strategy for the synthesis of H‐Co3O4@MCNBs involves chemical etching‐coordination and subsequent two‐step annealing treatments. Owing to the unique structural merits including more active interfacial sites, effectively alleviated volume variation, good and stable electrical contact, and easy access of Li+ ions, the H‐Co3O4@MCNBs exhibit excellent lithium‐storage performance in terms of high specific capacity, excellent rate capability, and cycling stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.