Abstract

Nanostructured mixed metal oxides with porous hollow-interior structure hold great promise in environmental-related catalysis, owing to their excellent catalytic properties. However, facile fabrication of such mesoporous architecture is still challenging. Here, by using a transient aerosol-assisted self-assembly (AASA) method, we synthesized the Co3O4-Al2O3 mesoporous hollow spheres (MHS) composed of thermally stable Co3O4 nanoparticles partially anchored to amorphous interfacial Al2O3. The as-prepared Co3O4-Al2O3 nanocomposites displayed distinct features of large pore volume and stable assembled morphology, and thus showed significant advantages in mass transfer and redox behavior. For Fischer-Tropsch synthesis, a very important reaction in fuel production, the Co3O4-Al2O3 MHS exhibited significant catalytic performance in conversion, selectivity and stability for the desired gasoline products. Therefore, we provide a facile and controlled approach towards the preparation of mesoporous hollow materials to achieve novel mixed metal oxide nanocatalysts those are good candidates in energy-production application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.