Abstract

The neurotransmitter mechanisms that process acid hypercapnia in the mammalian carotid body (CB) are poorly understood. Using a co-culture model containing rat CB chemoreceptor (type 1 cell) clusters and petrosal neurons (PN), we tested the hypothesis that co-released ACh and ATP was an important mechanism. Sensory transmission from type I clusters to PN in co-culture occurred at chemical synapses via co-release of ATP and ACh because isohydric hypercapnia depolarized and/or increased firing in co-cultured PN, but not in PN cultured alone; PN chemoexcitatory responses were inhibited by decreasing the extracellular Ca(2+):Mg2+ ratio; partial inhibition of these responses occurred during separate perfusion of cholinergic (hexamethonium or mecamylamine) and P2X (suramin) receptor blockers, although inhibition was often complete with both blockers present; and rapid chemoexcitatory responses to hypercapnia were inhibited by acetazolamide (10 microM), an inhibitor of carbonic anhydrase, localized in type I cells. Acidosis (pH = 7.0, 7.2) enhanced the ATP-induced whole cell current in functional PN relative to that at physiologic pH (7.4), suggesting that increased sensitivity of postsynaptic P2X receptors may contribute to acid chemotransmission. Type I cells in CB tissue sections expressed vesicular acetylcholine transporter (VAChT), a cholinergic marker, as revealed by confocal immunofluorescence. Thus co-release of ACh and ATP is an important neurotransmitter mechanism for processing isohydric and acidic hypercapnia in the rat carotid body.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call