Abstract

Lithium-sulfur (Li-S) batteries are one of the main challenges facing Li-ion technology because the insulating nature of sulfur and the shuttle phenomenon of dissolved lithium polysulfides (LPSs) in liquid electrolytes result in critical problems, including low Coulombic efficiency, loss of active material, and rapid capacity decay. Here, we oxidized delaminated transition metal carbides (MXenes) using CO2 (Oxi-d-MXenes) and used them as both cathode electrode with sulfur and modified separator coated onto the glass fiber without a conductive material and binder to suppress the diffusion of LPSs. Oxi-d-MXenes annealed at 900 °C using CO2 gas formed perfectly converted rutile-TiO2 nanocrystalline particles on their two-dimensional sheets. Li-S batteries fabricated with the Oxi-d-MXenes cathode and the Oxi-d-MXenes-modified separator exhibited high Coulombic efficiency (nearly 99%) and retained a capacity of about 900 mAh g-1 after 300 cycles at a current density of 1C. These results were attributed to the chemical and physical adsorption between the Oxi-d-MXenes and the LPSs. Our results imply that Oxi-d-MXenes prepared by the CO2 treatment exhibit physical and electrochemical properties that enhance the performance of Li-S batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call