Abstract
We have discovered diffuse warm air vents at the surface of a chrysotile milling waste heap at the Black Lake mine, Thetford Mines, Quebec, Canada. The venting areas are inconspicuous, except in winter when the vents form snow-free areas of unfrozen ground, each with a surface area of 1â15 m 2 . The temperature and chemical composition of the warm air vents have been monitored from March 2009 to July 2010. The temperature of the warm air and ground surface at the venting sites ranged from 6.6 to 20.0 °C, whereas that of the ambient air ranged from â13.2 to 20.0 °C. The difference between atmospheric and vent air temperatures is greater in cold-weather months. The warm air has low CO 2 content, but has otherwise normal atmospheric gas composition. Warm air volumetric flow varies from 2.1 to 19.9 L/m 2 /s in winter, when it contains between 2 . In summer, the venting areas are more diffuse, with volumetric flow rates ranging from 0.5 to 1.5 L/m 2 /s, and are less depleted in CO 2 (260â370 ppm). Frozen ground is likely focusing airflow in winter compared to summer. We present a conceptual model in which air enters the steep flanks of the chrysotile milling waste heap, into which CO 2 reacts with Mg-rich minerals, stripping CO 2 from air by exothermic mineral carbonation reactions. Considering the surface area of summer and winter venting areas, flow rates, and concentration of CO 2 in warm air vents, we estimate that the Black Lake mine heap passively captures at least 0.6 kt CO 2 per year.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.