Abstract

Carbon dioxide adsorption isotherms have been computed for the metal–organic framework (MOF) Fe2(dobdc), where dobdc4– = 2,5-dioxido-1,4-benzenedicarboxylate. A force field derived from quantum mechanical calculations has been used to model adsorption isotherms within a MOF. Restricted open-shell Møller–Plesset second-order perturbation theory (ROMP2) calculations have been performed to obtain interaction energy curves between a CO2 molecule and a cluster model of Fe2(dobdc). The force field parameters have been optimized to best reproduced these curves and used in Monte Carlo simulations to obtain CO2 adsorption isotherms. The experimental loading of CO2 adsorbed within Fe2(dobdc) was reproduced quite accurately. This parametrization scheme could easily be utilized to predict isotherms of various guests inside this and other similar MOFs not yet synthesized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.