Abstract

CO2 capture by dropwise CO2 condensation on cold solid surfaces is a promising technology. Understanding the role of the nanoscale surface and topographical features of CO2 droplet wetting characteristics is of importance for CO2 capture by this technology, but this remains unexplored as of yet. Here, using large-scale molecular dynamics (MD) simulations, the contact angle and wetting behaviors of CO2 droplets on pillar-structured Cu-like surfaces are investigated for the first time. Dynamic wetting simulations show that, by changing the strength of the solid–liquid attraction a smooth Cu-like surface offers a transition from CO2-philic to CO2-phobic. By periodically pillared roughening of the Cu-like surfaces, however, a higher contact angle and a smaller spreading exponent of a liquid CO2 droplet are realized. Particularly, a critical crossover of CO2-philic to CO2-phobic can appear. The wetting of the pillared surfaces by a liquid CO2 droplet proceeds non-uniformly. A liquid CO2 droplet is capable of exhibiting a transition from the Cassie state to the Wenzel state with increasing increasing inter-pillar distance, and increasing pillar width. The wetting morphologies of the metastable Wenzel state of a CO2 droplet are very different from each other. The findings will inform the ongoing design of CO2-phobic solid surfaces for practical dropwise condensation-based CO2 capture applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.