Abstract

The cobalt (Co2+) has been successively substituted in ZnCuFe2O4 to obtain Zn0.5−xCoxCu0.5Fe2O4 (0.0 ≤ x ≤ 0.5) ferrites by auto-combustion technique. Prior to photocatalytic degradation, all as-synthesized ferrites were characterized to study their structure, composition, morphology, magnetic and optical behavior. The shifting of tetrahedral as well as octahedral stretching peaks towards higher frequencies observed in the Fourier transform infrared spectroscopy indicates that Co2+ ion is substituted in ZnCuFe2O4. X-ray diffraction pattern confirms the formation of single-phase cubic spinel with decrease in average lattice constant from 8.3915 to 8.3224 A with increase in Co2+ substitution. The photocatalytic performance of obtained ferrite catalyst was determined using methylene blue (MB) as model dye under visible light and direct sunlight. The degradation of MB with as-obtained photocatalyst under sunlight improves (91%) which proves the effective utilization of visible light active magnetic photocatalyst.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call