Abstract

Emission gas and air contain not only CO2 but also plentiful moisture, making it difficult to achieve selective CO2 absorption without hydration. To generate absorbed CO2 (wet CO2) under heating, the need for external energy to release the absorbed water has been among the most serious problems in the fields of carbon dioxide capture and storage (CCS) and direct air capture (DAC). We found that the introduction of the hydrophobic phenyl group into alkylamines of CO2 absorbents improved the absorption selectivity between CO2 and water. Furthermore, ortho-, meta-, and para-xylylenediamines (OXDA, MXDA, PXDA, respectively) absorbed only CO2 in air without any hydration. Notably, MXDA·CO2 was formed as an anhydrous carbamic acid even in water, presumably because it was covered with hydrophobic phenyl groups, which induces a reverse lipid bilayer structure. Dry CO2 was obtained from heating MXDA·CO2 at 103-120 °C, which was revealed to involve chemically the Grignard reaction to form the resulting carboxylic acids in high yields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call