Abstract

The ability to accurately predict the CO2 storage resource in saline formations is important to make high-level, energy-related government policy and business decisions. CO2-SCREEN (Storage prospeCtive Resource Estimation Excel aNalysis) is a tool developed by the United States Department of Energy − National Energy Technology Laboratory (US-DOE-NETL) to screen saline formations for prospective CO2 storage resources. CO2-SCREEN uses DOE methods and equations to serve as a consistent mechanism for calculating prospective CO2 storage resources. CO2-SCREEN is comprised of two files: an Excel file used for inputs and outputs and a GoldSim Player file used to run Monte Carlo simulations. CO2-SCREEN requires input of physical geologic parameters (i.e. thickness, porosity) as well as efficiency factor ranges (i.e. net-to-gross thickness) to calculate a mass storage estimate. An application of CO2-SCREEN is demonstrated here using well log data from the Oriskany Sandstone portion in Pennsylvania. The Oriskany Sandstone is divided into 20 km x 20 km grid cells in which 151 cells contain well log data. CO2-SCREEN calculates prospective CO2 storage resource for each grid cell based on the well log data and uses lithology and depositional environment information for efficiency factor ranges. The Oriskany Sandstone CO2 storage resource estimate for Pennsylvania, calculated by CO2-SCREEN, ranges from 0.07 to 1.28 gigatons (Gt) with a P50 value of 0.32 Gt. This resource assessment analysis is done to demonstrate the use of CO2-SCREEN and results are comparable to previous studies which encourages the application of CO2-SCREEN to other saline formations and warrants exploring the expansion of this tool to assess the CO2 storage resource in other formations such as shale and depleted oil and gas reservoirs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.