Abstract
Carbon dioxide capture and storage (CCS) has been actively researched as a strategy to mitigate CO(2) emissions into the atmosphere. The three components in CCS are monitoring, verification, and accounting (MVA). Seismic monitoring technologies can meet the requirements of MVA, but they require a quantitative relationships between multiphase saturation distributions and wave propagation elastic properties. One of the main obstacles for quantitative MVA activities arises from the nature of the saturation distribution, typically classified anywhere from homogeneous to patchy. The emerging saturation distribution, in turn, regulates the relationship between compressional velocity and saturation. In this work, we carry out multiphase flow simulations in a 2-D aquifer model with a log-normal absolute permeability distribution and a capillary pressure function parametrized by permeability. The heterogeneity level is tuned by assigning the value of the Dykstra-Parson (DP) coefficient, which sets the variance of the log-normal horizontal permeability distribution in the entire domain. Vertical permeability is a 10th of the horizontal value in each gridcell. We show that despite apparent differences in saturation distribution among different realizations, CO(2) trapping and the V(p)-S(w) Rock Physics relationship are mostly functions of the DP coefficient. When the results are compared with the well accepted limits, Gassmann-Wood (homogeneous) (A Text Book of Sound; G. Bell and Suns LTD: London, 1941) and Gassmann-Hill (patchy) models, the V(p)-S(w) relationship never reaches the upper bound, that is, patchy model curve, even at the highest heterogeneity level in the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.