Abstract

Natural small molecules have demonstrated tremendous potential for the construction of supramolecular chiral nanostructures owing to their unique molecular structures and chirality. In this study, novel CO2-responsive supramolecular hydrogels were constructed using a series of rosin-based surfactants (CnMPAN, n = 10, 12, and 14). The macroscopic properties, rheological properties, nanostructures, and intermolecular interactions of the hydrogels were investigated using differential scanning calorimetry, rotational rheometry, cryogenic transmission electron microscopy, and Fourier transform infrared spectroscopy. Interestingly, diverse nanostructures containing helical nanofibers, interwoven nanofibers, and twisted nanoribbons were formed in the hydrogels, which were rarely observed in reported supramolecular hydrogels, and the strength of the hydrogels was significantly enhanced by increasing the CnMPAN concentration and the alkyl chain length. The obtained hydrogels exhibited excellent CO2-responsiveness, with no obvious variation in the nanostructures and rheological properties after response to CO2/N2 for five cycles. Taking advantage of the chiral nanostructures of hydrogels, gold nanoparticles (GNPs) were further prepared. The average particle sizes of the resulting GNPs were as low as 2.5 nm, and the GNPs also had a chiral structure. It is worth noting that no additional reductants and UV-light irradiation were used during the reduction process of GNPs. This study emphasizes that the unique molecular structure and chirality of rosin are critical for the preparation of hydrogels with chiral nanostructures. In addition, this study enriches the applications of forest resources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.