Abstract

We demonstrate that the nanodomains within a ternary system consisting of oil, surfactant, and a new reactive ionic liquid can be tuned reversibly upon exposure to and removal of CO2 under mild conditions of temperature and pressure. The equilibrium microstructures of these domains have been characterized by small-angle neutron scattering and demonstrate that control over emulsion morphology (and therefore physicochemical properties such as viscosity) and the breaking of emulsions can be achieved without the need for irreversible changes in system composition or significant energy input.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call