Abstract
This article reports on a new class of stimuli-responsive surfactant generated from commercially available amphiphiles such as dodecyltrimethylammmonium bromide (DTAB) by substitution of the halide counterion with counterions such as 2-cyanopyrrolide, 1,2,3-triazolide, and L-proline that complex reversibly with CO2. Through a combination of small-angle neutron scattering (SANS), electrical conductivity measurements, thermal gravimetric analysis, and molecular dynamics simulations, we show how small changes in charge reorganization and counterion shape and size induced by complexation with CO2 allow for fine-tunability of surfactant properties. We then use these findings to demonstrate a range of potential practical uses, from manipulating microemulsion droplet morphology to controlling micellar and vesicular aggregation. In particular, we focus on the binding of these surfactants to DNA and the reversible compaction of surfactant-DNA complexes upon alternate bubbling of the solution with CO2 and N2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.