Abstract

Although high-surface area activated carbons used as supercapacitor (SC) electrodes are frequently produced by KOH activation, this study shows that, when aqueous electrolytes are used, CO2 activation is a better choice from the point of view of SC performance, environment and economy. Ordered mesoporous carbons (OMCs) produced by a mechanochemical synthesis method from mimosa tannin are activated with KOH to use these materials as electrodes for SCs. A comparative analysis of the same OMCs but activated with CO2 is presented to examine the effect of the activation process on materials performance. KOH-activated materials exhibit good electrochemical performance at low charging rates, reaching specific cell capacitance values of 49 F g−1 at 0.5 Ag−1, however, restricted access to microporosity and low water affinity water reduces their performance at high charging rates. In contrast, the best performing CO2-activated material can retain 81% of capacitance at 20 A g−1, compared to 25% for a KOH-activated OMC with similar properties and tested under the same conditions. A thorough review of the open literature suggests that CO2 activation would produce materials with a suitable combination of pore network connectivity and water affinity, resulting in SCs with high rate capability in an aqueous electrolyte. These conclusions were drawn by judiciously integrating the analysis of: (i) the hysteresis loop scanning of N2 adsorption-desorption isotherms; and (ii) water adsorption isotherms as tools to more accurately assess the pore network connectivity and water affinity of the materials, which are not generally considered when studying SC performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call