Abstract

The interaction between a heated carbon-based material and high-temperature air may produce ablation gas species such as CO2, affecting heat transfer onto the surface of a thermal protection system. The prediction of ablation gas production is critical for heat flux prediction and the design of a thermal protection system. In this study, we present a system that measures the number density of CO2 formed by the gas–surface interaction between a hot carbon surface and high-temperature gas. The heated carbon wall is exposed to high-temperature air by using a shock tube and surface heating model. The surface temperature of the carbon wall is measured using two-color ratio pyrometry. The number density of CO2 is predicted by performing numerical calculations for the shock tube flow with gas–surface interaction modeling. The number density of CO2 molecules is measured using infrared emission spectroscopy. The measured CO2 number density is 9.60 × 1023 m−3 at an area-weighted average surface temperature of 1212 K. The measured number density matches the predicted value within an error of 6%. The proposed system is applicable for CO2 number density measurement under various gas–surface interaction conditions, and it can be used for the investigation of ablative gas production and numerical research on gas–surface interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call