Abstract

Both of carbon dioxide (CO2) and near-infrared (NIR) light as triggers for non-invasive remotely control are attracting wide attentions due to their good biocompatibility and easy operation. Here, CO2/NIR light dual controlled nanoparticles are proposed to remotely regulate the unzipping of dsDNA by using imidazole functionalized conjugated polymer nanoparticles (imidazole-CPNs). The dsDNA successfully coats on the shell of imidazole-CPNs to form imidazole-CPNs/dsDNA assembly due to intensively electrostatic interaction triggered by CO2. Furthermore, the unzipping process of dsDNA is remotely controlled by NIR light based on the photothermal effect, and it can be readily monitored by the fluorescence intensity of ethidium bromide (EB) and CD spectra of dsDNA. Thus, dual stimulation responsive imidazole-CPNs effectively control dsDNA unzipping under CO2 stimulus and NIR light, promising a new direction in the biological applications of DNA, such as the treatments of diseases caused by gene duplication abnormality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.