Abstract

The global clean energy transition requires CO2 emission reduction with a concurrent increase in the global supply of critical battery metals. A process has been developed at the lab scale. The hydrometallurgical process achieves CO2 mineralization and selective battery metal recovery from olivine and laterites. The natural minerals are processed at a modest temperature with a carbon dioxide pressure in a sodium bicarbonate solution containing soluble ligands enabling nickel and cobalt extraction. Iron and magnesium react with CO2 gas to form stable mineral carbonates for carbon dioxide sequestration. The leached nickel and cobalt are recovered by sulfide precipitation as high-value sulfides. The corresponding barren solution is recycled with no decrease in performance. The process consumes carbon dioxide and a source of sulfide. No additional acid or base is consumed in this novel process. Therefore, this work can potentially make significant contributions to the enhanced production of critical battery metals with enhanced CO2 storage and to the clean energy transition.KeywordsCO2 mineralizationCritical battery metal recoveryClean energy transitionOlivine and lateritesSelective nickel and cobalt extraction

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call