Abstract
Utilizing volatile renewable energy sources (e.g., solar, wind) for chemical production systems requires a deeper understanding of their dynamic operation modes. Taking the example of a methanation reactor in the context of power‐to‐gas applications, a dynamic optimization approach is used to identify control trajectories for a time optimal reactor start‐up avoiding distinct hot spot formation. For the optimization, we develop a dynamic, two‐dimensional model of a fixed‐bed tube reactor for carbon dioxide methanation which is based on the reaction scheme of the underlying exothermic Sabatier reaction mechanism. While controlling dynamic hot spot formation inside the catalyst bed, we prove the applicability of our methodology and investigate the feasibility of dynamic carbon dioxide methanation. © 2016 American Institute of Chemical Engineers AIChE J, 63: 23–31, 2017
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.