Abstract

As one of the most commonly bulky chemicals, chlorine is conventionally manufactured by electrolysis of NaCl solution in the chlor-alkali process, which requires a huge supply of electrical energy. The photocatalytic route to produce chlorine by using solar energy and NaCl solution offers a promising strategy to reduce energy consumption and bring economic benefits. Herein, it was found that the introduction of CO2 would enhance the productivity of Cl2 from 8.24 μmol⋅h-1 to 39.6 μmol⋅h-1 in NaCl solution over BiOCl. Experimental studies reveal that the CO2 species (CO3 2- ) entered into the crystal texture of BiOCl and the interlayer space between [Bi2 O2 ]2+ slabs were increased and distorted, accelerating the cycle of Cl species. Besides, the cycle of carbonate species also existed and accelerated the reaction efficiency of Cl- oxidation to Cl2 . This work provides a new feasible method of using abundant CO2 resources to accelerate the process of chlorine production via photocatalysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call