Abstract

Introducing engineered nanoparticles into an aquifer or reservoir can potentially increase the storage efficiency and mitigate the risk of leakage of stored CO2. We have measured flow pattern and pressure drop during core floods in which high pressure liquid CO2 or a CO2 analogue fluid displaces an aqueous suspension of nanoparticles. The displacement front is more spatially uniform and travels more slowly compared to a control displacement with no in- situ nanoparticles. Pressure measurements are consistent with generation of a viscous phase such as an emulsion during the displacement. These observations suggest that a nanoparticle stabilized emulsion is formed during the displacement which acts to suppress the viscous instability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call