Abstract

The physicochemical processes associated with CO2 leakage into shallow aquifer systems are complex and span multiple spatial and time scales. Continuum-scale numerical models that faithfully represent the underlying pore-scale physics are required to predict the long-term behavior and aid in risk analysis regarding regulatory and management decisions. This study focuses on benchmarking the numerical simulator, FEHM, with intermediate-scale column experiments of CO2 gas evolution in homogeneous and heterogeneous sand configurations. Inverse modeling was conducted to calibrate model parameters and determine model sensitivity to the observed steady-state saturation profiles. It is shown that FEHM is a powerful tool that is capable of capturing the experimentally observed outflow rates and saturation profiles. Moreover, FEHM captures the transition from single- to multi-phase flow and CO2 gas accumulation at interfaces separating sands. We also derive a simple expression, based on Darcy's law, for the pressure at which CO2 free phase gas is observed and show that it reliably predicts the location at which single-phase flow transitions to multi-phase flow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.