Abstract

The influence of process variables including heating mode, flux, laser beam offset, and travel speed on the weld bead geometry and joint strength was investigated during laser welding–brazing (LWB) of AZ31B Mg alloy to Zn coated steel. The wettability of molten filler metal on steel surface was studied via a Charge-coupled Device (CCD) camera. The reaction layers along the interface were characterized and the failure mechanism was identified. Dual beam processing was found to preheat the steel substrate and promote the wettability of molten filler metal on the steel surface, thereby improving the corresponding joint strength. Utilizing a flux was found to produce a similar effect on molten filler metal. The optimized range of laser offset was found to be between 0.5 and 1.0mm toward the steel side of the joint. These optimized parameters led to a maximum joint strength of 228N/mm. The joint strength was however found to decrease with increasing travel speed. Cracking was identified with travel speeds greater than 1m/min. Microstructural characterization showed that heterogeneous interfacial reaction layers were produced from the seam head to the seam root of the joint. The reaction layer thickness varied within a certain range when applying different process parameters, suggesting the growth of interfacial layer was not essentially related to the heat input. The primary failure mode of the lap specimens was interfacial fracture. Cracks propagated along the Mg–Zn reaction layer and steel interface. Original Fe–Al phase formed during the hot-dip galvanization process hindered the metallurgical bonding of Mg–Zn reaction layer and steel substrate, which was attributed to interfacial type failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.