Abstract
Over the past decade, flexible and wearable microelectronic devices and systems have gained significant importance. Because portable power source is an essential need of such wearable devices, currently there is considerable research emphasis on the development of planar interdigitated micro energy -torage devices by employing diverse precursor materials to obtain functional materials (functional carbon, oxides, etc.) with the desirable set of properties. Herein we report for the first time the use of metal organic framework (MOF) and zeolitic imidazolate framework (ZIF-67) for high-wavelength photothermal laser direct writing of metal-decorated, heteroatom-doped, porous few-layer graphene electrodes for microsupercapacitor application. We argue that the specific attributes of MOF as a precursor and the high-wavelength laser writing approach (which creates extremely high localized and transient temperature (>2500 °C) due to strong absorption by lattice vibrations) are together responsible for the peculiar interesting properties of the carbon material thus synthesized, thereby rendering extremely high cycling stability to the corresponding microsupercapacitor device. Our device exhibits near 100% retention after 200 000 cycles as well as stability under 150° bending.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.