Abstract

An increase in the dental caries prevalence on root surfaces has been observed mainly in elderly. This research assessed, in vitro, the effectiveness of a pulsed CO2 (λ = 10.6 μm) laser associated or not with fluoride, in reducing human root dentine demineralization in conditions that mimic an oral high cariogenic challenge. After sterilization, root dentine specimens were randomly assigned into 6 groups (n = 30), in triplicate. The groups were Control (C), Streptococcus mutans (SM), Fluoride (F), Laser (L), Fluoride + laser (FL), and Laser + fluoride (LF). Except for the control group, all the specimens were inoculated with SM and immersed 3 times a day in a 40% sucrose bath. After a 7-day cariogenic challenge, the mineral loss and lesion depth were evaluated by transverse microradiography and fluoride in the biofilm was determined using an ion-selective electrode. Results were statistically analyzed by analysis of variance, at 5% of significance level. For groups C, SM, F, L, FL and LF, the means (standard-deviation) of mineral loss were 816.3 (552.5)a, 3291.5 (1476.2)c, 2508.5 (1240.5)bc, 2916.2 (1323.7)c, 1839.7 (815.2)b and 1955.0 (1001.4)b, respectively; while lesion depths were 39.6 (22.8)a, 103.1 (38.9)c, 90.3 (44.6)bc, 91.7 (27.0)bc, 73.3 (26.6)b, 75.1 (35.2)b, respectively (different superscript letters indicate significant differences among groups). In conclusion, irradiation of root dentine with a pulsed CO2 laser at fluency of 12.0 J/cm2 was able to inhibit root surface demineralization only when associated with fluoride. No synergy effect on the inhibition of root dentine mineral loss was provided by the combination of fluoride application and laser irradiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call