Abstract

A series of palladium (2 wt.%) catalysts supported on silica (301 m2/g) and loaded with increasing amount of gallium – ratio of Ga/Pd = 2, 4 and 8 atom/atom – were investigated for CO2 hydrogenation to methanol. The turnover frequency to methanol (H2/CO2 = 3; 523 K, 3 MPa), based on surface palladium, showed a 200-fold enhancement as compared to the monometallic Pd/SiO2 catalyst. Additionally, the apparent activation energy for methanol synthesis decreased from 60 kJ/mol on Pd/SiO2 to ∼40 kJ/mol on the supported Ga-Pd catalysts. Characterization of the Pd-Ga catalyst series by X-ray absorption spectroscopy and high resolution transmission electron microscopy indicates the formation of Pd2Ga bimetallic nanoparticles partially covered by a thin layer of Ga2O3 on the silica surface. In situ infrared spectroscopy was employed to examine the reaction mechanism during the CO2 adsorption and hydrogenation at 0.7 MPa. It is proposed a bifunctional pathway where the carbonaceous species bound to the gallium oxide surface are hydrogenated, stepwise, to formate and methoxy groups by atomic hydrogen, which spillovers from the Pd-Ga bimetallic nanoparticles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.