Abstract

Development of a heterogeneous catalyst capable of selective transformation of CO2 to valuable products still remains a challenge. In this article, we account for the surfactant-directed synthesis of a new framework-incorporated nitrogen-containing periodic mesoporous organosilica nanosphere (NPMO). A thoroughly characterized N-incorporated hybrid PMO was utilized as a platform for stabilizing well-dispersed and easily accessible Pd nanoparticles (Pd-NPMO) without using any stabilizing agents or expensive dendrimers. Further, this bifunctional hybrid catalyst has been demonstrated to heterogeneously catalyze aqueous phase CO2 hydrogenation (CO2/H2 ratio 1:3) for the direct synthesis of formate under 4 MPa pressure and at 100 °C. To validate the superior performance of the Pd-NPMO catalyst, we compared the activity with Pd-SBA-15 catalysts, and the results showed a 10-fold increase in turnover frequency of 108 h–1 using Pd on NPMO which envisaged the crucial role of nitrogen sites in this catalyst to boost the CO2 valorization to formate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.