Abstract

CO2 conversion via hydrogenation on iron-based catalysts on non-carbon supports produces mainly CO or methane by the Sabatier reaction, while the formation of C2+ hydrocarbons is of greatest interest. CxHy production from CO2 may be considered as a two-step process with the initial formation of carbon monoxide by the reverse water gas shift reaction followed by the Fischer-Tropsch synthesis (FTS). In the present work CO2 hydrogenation over iron-based catalysts (Fe, FeCr, FeK) deposited on a carbon carrier has been studied. The catalyst structure has been investigated by XRD, TEM, XPS, Mössbauer spectroscopy and in situ magnetometry. Spinel-type oxide phases (magnetite Fe3O4; maggemite γ-Fe2O3, and, in the case of FeCr/C catalyst, iron chromite Fe1+xCr2-xO4) are formed on the catalysts, and they contribute exclusively to the CO production. Iron carbides, active in FTS, are formed on Fe- and FeK-catalysts during pre-activation in reducing environment and then during the reaction. The reaction over the 20Fe1K/C catalyst in supercritical high-density CO2/H2 substrate (400°C, 8.5 MPa) leads to 72% selectivity for C1-C12+ hydrocarbons (alkanes and alkenes). Under the same conditions, iron carbides do not form on the FeCr/C catalysts, and CO2 hydrogenation results in the CO formation with the selectivity of 90-100%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call