7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1016/j.jhydrol.2019.01.002
Copy DOIJournal: Journal of Hydrology | Publication Date: Jan 4, 2019 |
Citations: 9 |
Three hydroelectric reservoirs (Kralkızı, Dicle and Batman) in the Tigris River basin (Turkey) were sampled monthly during one year in order to reveal spatial and seasonal changes in aqueous partial pressure of CO2 (pCO2) and to estimate diffusive fluxes of CO2 from the reservoirs’ surface water. pCO2 concentrations did not show significant spatial differences, while they showed significant seasonal variations. Temperature, precipitation and biological CO2 uptake through photosynthesis controlled pCO2 seasonality in the reservoirs, with maximal concentrations in the winter (ranging from 516.9 µatm in Kralkızı to 1299.2 µatm in Dicle) and minimal concentrations in the spring (ranging from 47.7 µatm in Batman to 140.7 µatm in Kralkızı). Most studies reported that reservoirs worldwide are net sources of CO2 to the atmosphere. However, the reservoirs in this study were sinks for atmospheric CO2 during the spring, summer and autumn seasons, while they were CO2 sources to the atmosphere during the winter. Air-water CO2 fluxes in Kralkızı, Dicle and Batman dam reservoirs were 2.39, 32.88 and 8.12 mmol/m2/day in the winter, respectively. On an annual basis, all three reservoirs acted as a sink for atmospheric CO2. These estimated CO2 fluxes were in the lower range for temperate reservoirs, despite the potential for winter conditions that shifted the reservoirs from sink to net source for atmospheric CO2.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.