Abstract

Globally, reservoirs are a significant source of atmospheric CO2. However, precise quantification of greenhouse gas emissions from drinking water reservoirs on the regional or national scale is still challenging. We calculated CO2 fluxes for 39 German drinking water reservoirs during a period of 22years (1991-2013) using routine monitoring data in order to quantify total emission of CO2 from drinking water reservoirs in Germany and to identify major drivers. All reservoirs were a net CO2 source with a median flux of 167gCm-2y-1, which makes gaseous emissions a relevant process for the carbon budget of each reservoir. Fluxes varied seasonally with median fluxes of 13, 48, and 201gCm-2y-1 in spring, summer, and autumn respectively. Differences between reservoirs appeared to be primarily caused by the concentration of CO2 in the surface water rather than by the physical gas transfer coefficient. Consideration of short term fluctuations of the gas transfer coefficient due to varying wind speed had only a minor effect on the annual budgets. High CO2 emissions only occurred in reservoirs with pH<7 and total alkalinity <0.2mEql-1. Annual CO2 emissions correlated exponentially with pH but not with dissolved organic carbon (DOC). There was significant correlation between land use in the catchment and CO2 emissions. In total, German drinking water reservoirs emit 44000t of CO2 annually, which makes them a negligible CO2 source (<0.005% of national CO2 emissions) in Germany.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call