Abstract

Abstract In the wake of COP26 and the growing urgency of addressing climate change, achieving carbon neutrality by 2050 has become a central global objective. This imperative extends to industries like computer hardware manufacturing, which are now actively pursuing decarbonization strategies through the strategic adoption of renewable energy sources and energy efficiency enhancements. This research paper assessed the CO2 emission mitigation potential of a hybrid system of photovoltaic (PV) roof and cogeneration where a large factory of computer hardware manufacturing in tropical Thailand was selected as a study site. On one hand, a one-Megawatt photovoltaic system was installed over the roof of the production building to generate electricity from solar radiation to serve the building. On the other hand, a twenty-four-Megawatt cogeneration system of gas engines as the prime mover was used to supply power to meet the building’s electricity demand. Waste heat from the gas engine was used by the absorption chiller to generate chilled water for cooling inside the building. Based on the system equipment specifications, the annual simulation using Thailand’s solar radiation showed that the installed photovoltaic system could generate electricity of 1,412.4 MWhelec/year while the implementation of the absorption chillers for cooling helped to reduce the electrical energy consumed by the traditional electric chiller by 10,211.4 MWhelec/year. In our study case where the CO2 emission of the grid power was 0.4758 kgCO2/kWhelec in the year 2022 and was reduced to 0.350 kgCO2/kWhelec in the year 2050, the total CO2 emission mitigation from the hybrid photovoltaic and cogeneration system with the genset efficiency of 50% and the waste heat recovery of 60% could reduce approximately 207,388.5TonCO2 for over 20 years as compared to the scenario where the grid electricity alone powered the building. These findings underscored the critical role of the proposed hybrid system in addressing the climate crisis and exemplified how the industry could make meaningful strides toward more environmental sustainability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.