Abstract
Dissolution of CO2 in water was studied for a batch vertical multiorifice baffled column (MOBC) with varying orifice diameters (d0) of 6.4–30 mm and baffle open area (α) of 15–42%. Bubble size distributions (BSDs) and the overall volumetric CO2 mass transfer coefficient (KLa) were experimentally evaluated for very low superficial gas velocities, UG of 0.12–0.81 mm s–1, using 5% v/v CO2 in the inlet gas stream at a range of fluid oscillations (f = 0–10 Hz and x0 = 0–10 mm). Remarkably, baffles presenting large do = 30 mm and α = 36%, therefore in the range typically found for single-orifice oscillatory baffled columns, were outperformed with respect to BSD control and CO2 dissolution by the other baffle designs or the same aerated column operating without baffles or fluid oscillations. Flow visualization and bubble tracking experiments also presented in this study established that a small do of 10.5 mm combined with a small value of α = 15% generates sufficient, strong eddy mixing capable of generating and...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.