Abstract

The implementation of corrosion detection in submarine pipelines is difficult, and a combined PCA-MLP prediction model is proposed to improve the accuracy of corrosion prediction in submarine pipelines. Firstly, the corrosion rate of a submarine multiphase flow pipeline in the South China Sea is simulated by the De Waard 95 model in the multiphase flow transient simulation software OLGA and compared with the actual corrosion rate; then, according to the corrosion data simulated by OLGA, principal component analysis (PCA) is used to reduce the dimensionality of the corrosion factors in the pipeline, and the multiple linear regression model (MLR), multi-layer perceptron neural network (MLPNN), and radial basis function neural network (RBFNN) were optimized. The PCA-MLPNN model has an average relative error of 3.318%, an average absolute error of 0.0034, a root mean square error of 0.0082, a residual sum of squares of 0.0020, and a coefficient of determination of 0.8609. Compared with five models, including MLR, MLPNN, RBFNN, PCA-MLR, PCA-MLPNN, and PCA-RBFNN, PCA-MLPNN has higher prediction accuracy and better prediction performance. The above results indicate that the combined PCA-MLPNN model has a more reliable application capability in CO2 corrosion prediction of submarine pipelines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.