Abstract
In a first step toward the rational design of macrocyclic structures optimized for CO2 capture, we systematically explored the potential of 30 five-membered aromatic heterocycles to establish coordinating complexes with this pollutant. The interactions between the two moieties were studied in several orientations, and the obtained complexes were analyzed in terms of electron density and vibrational fingerprint. The former is an aid to provide an in-depth knowledge of the interaction, whereas the latter should help to select structural motifs that have not only good complexation properties but also diagnostic spectroscopic signals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.