Abstract

Calcium looping, CaL, is an emerging CO2 capture technology that is of special interest for use in cement plants, as it offers the possibility of exploiting several energy and material synergies. In this work, the CO2 carrying capacity of calcined raw meal materials for cement plants has been investigated with thermogravimetric equipment in a wide range of testing conditions. When calcination was carried out at high temperatures and over long times, some raw meals display a sharp decrease in their subsequent CO2 capture capacity compared to their limestone counterparts, while others perform as expected from their CaO content. XRD observations of calcined samples confirmed the formation of Ca2SiO4, i.e., belite, as the main deactivation agent, since belite formation removes active CaO for CO2 capture during the carbonation stage. The extent of belite formation was found to be greatly influenced by the nature of the raw meal (in particular by the level of aggregation of Ca and Si atoms in the material), by ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.