Abstract

CO2 capture from ambient air is an interesting option for CO2 enrichment in greenhouses. In this study, adsorbents comprised of hydrated Na2CO3 supported over activated carbon honeycombs were prepared, characterized and tested for CO2 capture from air. The adsorption of H2O and the formation of the hydrates were studied by means of FT-IR spectroscopy. The inlet CO2 concentration showed to have a major influence on the conversion yield into NaHCO3, and the results fitted well to the Toth model. A statistical model of the CO2 capture capacity was obtained to get insight into the key parameters of the adsorption process. The air temperature and its moisture content showed to have the largest impact on the CO2 capture, while the flow rate had a minor influence. The chemical reaction path during the CO2 adsorption showed to be determined by the relative humidity conditions inside the reactor. Addition of more salt on the carrier showed to improve the CO2 capture capacity, but this is limited by the strength of the honeycomb carrier. Finally, a preliminary desorption test via a mild temperature and moisture swing was run to assess the feasibility of the process for application in greenhouses. The results showed that the required volume of adsorbent would be roughly 1/1000 of the total volume of a closed greenhouse assuming a target CO2 level of 1200 ppm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.