Abstract

AbstractAlthough pyrazine‐linked hybrid ultramicroporous materials (HUMs, pore size <7 Å) are benchmark physisorbents for trace carbon dioxide (CO2) capture under dry conditions, their affinity for water (H2O) mitigates their carbon capture performance in humid conditions. Herein, we report on the co‐adsorption of H2O and CO2 by TIFSIX‐3‐Ni—a high CO2 affinity HUM—and find that slow H2O sorption kinetics can enable CO2 uptake and release using shortened adsorption cycles with retention of ca. 90 % of dry CO2 uptake. Insight into co‐adsorption is provided by in situ infrared spectroscopy and ab initio calculations. The binding sites and sorption mechanisms reveal that both CO2 and H2O molecules occupy the same ultramicropore through favorable interactions between CO2 and H2O at low water loading. An energetically favored water network displaces CO2 molecules at higher loading. Our results offer bottom‐up design principles and insight into co‐adsorption of CO2 and H2O that is likely to be relevant across the full spectrum of carbon capture sorbents to better understand and address the challenge posed by humidity to gas capture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.