Abstract

The ZnO-ZrO2 catalyst was prepared by the deposition-precipitation method using ZrO2 as the carrier obtained from calcining commercial zirconium hydroxide (Zr(OH)4). And the catalytic performance was evaluated at 873 K in CO2-assisted ethane oxidative dehydrogenation reaction (CO2-ODHE). The physical-chemical properties and morphology were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectra, High-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectra (XPS), CO2 temperature-programmed desorption (CO2-TPD). The results show that ZnO were doped into the surface lattice of ZrO2 on the 5%ZnO-ZrO2 catalyst, generating highly dispersed ZnO species and oxygen-deficient regions on catalyst surface. 5%ZnO-ZrO2 catalyst could selectively breaking C–H bond instead of C–C bond, delivering excellent catalytic performance. 210 μmol/(gcat·min) of C2H4 formation rate could compare favorably with the data reported on noble metal and transition metal carbides. Additionally, the possible mechanism is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call