Abstract

Own-rooted one-year-old `Concord' grapevines were fertigated twice weekly for 11 weeks with 1, 10, 20, 50, OR 100 μmol iron (Fe) from ferric ethylenediamine di (o-hydroxyphenylacetic) acid in a complete nutrient solution. As Fe supply increased, leaf total Fe content did not change, whereas active Fe (extracted by 2, 2'-dipyridyl) and total chlorophyll content increased curvilinearly. CO2 assimilation and stomatal conductance increased curvilinearly with increasing active Fe, whereas intercellular CO2 concentrations decreased linearly. Activities of key Calvin cycle enzymes, Rubisco, NADP-glyceraldehyde-3-phosphate dehydrogenase, phosphoribulokinase, stromal fructose-1,6-bisphosphatase (FBPase), and a key enzyme in sucrose synthesis, cytosolic FBPase, all increased linearly with increasing active Fe. No difference was found in the activities of ADP-glucose pyrophosphorylase and sucrose phosphate synthase of leaves between the lowest and the highest treatments, whereas slightly lower activities were observed in the middle Fe treatments. Content of 3-phosphoglycerate increased curvilinearly with increased active Fe, whereas glucose-6-phosphate and fructose-6-phosphate did not change. Glucose, fructose, sucrose, starch, and total non-structural carbohydrates at both dusk and pre-dawn increased with increasing active Fe. Carbon export from starch breakdown during the night, calculated as the difference between dusk and predawn levels, increased as active Fe increased. In conclusion, Fe limitation reduces the activities of Rubisco and other photosynthetic enzymes, and hence CO2 assimilation capacity. Fe-deficient grapevines have lower concentrations of non-structural carbohydrates in source leaves, and therefore, are source limited.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.