Abstract

The carotid bodies respond to changes in arterial O(2), CO(2), and pH, and Ca(2+) influx via voltage-gated Ca(2+) channels is an important step in the chemoreception process. The objectives of the present study were as follows: 1) to determine whether hypercapnia modulates Ca(2+) current in glomus cells, and if so, to determine if this modulation is secondary to changes in pH; 2) to examine the mechanism of CO(2) modulation of the Ca(2+) current; and 3) to determine whether the effects of hypercapnia and hypoxia on Ca(2+) channel activity in glomus cells are synergistic. The effects of CO(2) on Ca(2+) current were monitored in glomus cells isolated from rabbit carotid bodies using both perforated and conventional patch-clamp techniques. Raising CO(2) in the extracellular solution from 5 to 10% (hypercapnia) reversibly augmented the whole-cell Ca(2+) current. This augmentation was rapid and increased the whole-cell Ca(2+) current similarly in both the perforated and the conventional patch configurations by 16 +/- 2% (n = 5) and 15 +/- 1% (n = 32), respectively. The following observations suggest that the effects of CO(2) are not secondary to changes in pH: 1) isohydric hypercapnia (pH maintained at 7.4) augmented the Ca(2+) current by 24 +/- 2% (n = 6); 2) decreasing the pH of the extra- or intracellular solutions decreased the Ca(2+) current by 43 +/- 4% (n = 8) and 13 +/- 1% (n = 5), respectively; and 3) hypercapnia did not shift the half-maximal activation voltage (V(1/2)), whereas intracellular and extracellular acidosis alone caused shifts in V(1/2). Furthermore, 100 nM of a membrane-permeable protein kinase A inhibitor prevented the augmentation by CO(2), and 500 microM 8-Br-cAMP mimicked the effect of CO(2) by augmenting the Ca(2+) current by 10 +/- 2% (n = 6). Also, cyclic AMP levels in carotid bodies increased from 1.98 +/- 0.6 to 9.0 +/- 2 pmol/microg protein in response to hypercapnia. In contrast, decreasing pH in the nominal absence of CO(2) did not affect cAMP levels in rabbit carotid bodies. Further, nisoldipine, but not omega-conotoxin MVIIC, prevented augmentation of the Ca(2+) current by CO(2). In addition, when combined, hypercapnia and hypoxia augmented the Ca(2+) current by 26 +/- 4% (n = 7), which is greater than either stimulus alone, suggesting the effects are additive. Taken together, these results indicate that L-type Ca(2+) current is augmented by hypercapnia. The effect of CO(2) is not secondary to changes in pH and seems to be mediated by a protein kinase A-dependent mechanism. Furthermore, hypercapnia and hypoxia act additively in stimulating Ca(2+) current in glomus cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call