Abstract

In this work an array of chemical sensors for gas detection has been developed, starting with a commercial sensor platform developed by Microchip (GestIC), which is normally used to detect, trace, and classify hand movements in space. The system is based on electric field changes, and in this work, it has been used as mechanism revealing the adsorption of chemical species CO2 and O2. The system is composed of five electrodes, and their responses were obtained by interfacing the sensors with an acquisition board based on an ATMEGA 328 microprocessor (Atmel MEGA AVR microcontroller). A dedicated measurement chamber was designed and prototyped in acrylonitrile butadiene styrene (ABS) using an Ultimaker3 3D printer. The measurement cell size is 120 × 85 mm. Anthocyanins (red rose) were used as a sensing material in order to functionalize the sensor surface. The sensor was calibrated using different concentrations of oxygen and carbon dioxide, ranging from 5% to 25%, mixed with water vapor in the range from 50% to 90%. The sensor exhibits good repeatability for CO2 concentrations. To better understand the sensor response characteristics, sensitivity and resolution were calculated from the response curves at different working points. The sensitivity is in the order of magnitude of tens to hundreds of µV/% for CO2, and of µV/% in the case of O2. The resolution is in the range of 10−1%–10−3% for CO2, and it is around 10−1% for O2. The system could be specialized for different fields, for environmental, medical, and food applications.

Highlights

  • The detection and the measurement of gas concentrations can be carried out using several principles

  • The most common working principles, sensors, and systems used for gas detection are: electrochemical sensors [1,2], systems based on Quartz Crystal Microbalances [3], sensors based on semiconductors [4,5], optical sensors [6], capacitive sensors [7], cantilever-based sensors [8], and colorimetric devices [9]

  • Initial phase was was to explore the sensitivity of the system to the target gases without the presence of a chemically to explore the sensitivity of the system to the target gases without the presence of a chemically active active layer. conditions, In these conditions, did the notability show to themeasure ability different to measure gas layer

Read more

Summary

Introduction

The detection and the measurement of gas concentrations can be carried out using several principles. The most common working principles, sensors, and systems used for gas detection are: electrochemical sensors [1,2], systems based on Quartz Crystal Microbalances [3], sensors based on semiconductors [4,5], optical sensors [6], capacitive sensors [7], cantilever-based sensors [8], and colorimetric devices [9]. Capacitive sensors used as proximity detectors for tracking and control [10] could be a valid option for gas detection, due to their simple structure, which allows miniaturization, their high sensitivity and low cost. This networking inter-operability asks for simplicity, which gains reliability for standalone functioning; and low cost and size, which allow wide network building. A sensor’s size, simplicity, and cost are strategic to allow a distributed network of sensing elements in order to monitor and map complex scenarios [11,12,13].

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.