Abstract

In the present work, effect of CO2+H2 gas mixture inclusion on shrinkage of plasma was numerically investigated on high power Ar inductively coupled thermal plasmas at atmospheric pressure. The gas mixture of CO2+H2 has many reactions in wide temperature range of 300-20000K which may cause some performance in thermal plasmas. Simulation has been carried out solving a two-dimensional local thermodynamic equilibrium (LTE) code. The active plasma power and input fundamental frequency were fixed at 27kW and 450kHz respectively. The main variable parameter was the admixture ratio of secondary gas (CO2+H2 gas mixture) and it has been found that the injection of excess dissociative molecular gases shrink the plasma in radius keeping the center temperature about 10,000K by investigating the plasma radius having temperature beyond 5,000K for each of the case. The result also shows that increasing the inclusion (admixture ratio) of CO2+H2 molecular gas raises the plasma peak temperature. The result is also compared with that of Ar-CO2 and Ar-H2 thermal plasma and finally a comparative study and conclusions have been made.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.