Abstract

A molecular simulation study is reported for CO(2) adsorption in rho zeolite-like metal-organic framework (rho-ZMOF) exchanged with a series of cations (Na(+), K(+), Rb(+), Cs(+), Mg(2+), Ca(2+), and Al(3+)). The isosteric heat and Henry's constant at infinite dilution increase monotonically with increasing charge-to-diameter ratio of cation (Cs(+) < Rb(+) < K(+) < Na(+) < Ca(2+) < Mg(2+) < Al(3+)). At low pressures, cations act as preferential adsorption sites for CO(2) and the capacity follows the charge-to-diameter ratio. However, the free volume of framework becomes predominant with increasing pressure and Mg-rho-ZMOF appears to possess the highest saturation capacity. The equilibrium locations of cations are observed to shift slightly upon CO(2) adsorption. Furthermore, the adsorption selectivity of CO(2)/H(2) mixture increases as Cs(+) < Rb(+) < K(+) < Na(+) < Ca(2+) < Mg(2+) ≈ Al(3+). At ambient conditions, the selectivity is in the range of 800-3000 and significantly higher than in other nanoporous materials. In the presence of 0.1% H(2)O, the selectivity decreases drastically because of the competitive adsorption between H(2)O and CO(2), and shows a similar value in all of the cation-exchanged rho-ZMOFs. This simulation study provides microscopic insight into the important role of cations in governing gas adsorption and separation, and suggests that the performance of ionic rho-ZMOF can be tailored by cations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call